منابع مشابه
LogitBoost autoregressive networks
Multivariate binary distributions can be decomposed into products of univariate conditional distributions. Recently popular approaches have modeled these conditionals through neural networks with sophisticated weight-sharing structures. It is shown that state-of-the-art performance on several standard benchmark datasets can actually be achieved by training separate probability estimators for ea...
متن کاملRobust LogitBoost and Adaptive Base Class (ABC) LogitBoost
Logitboost is an influential boosting algorithm for classification. In this paper, we develop robust logitboost to provide an explicit formulation of tree-split criterion for building weak learners (regression trees) for logitboost. This formulation leads to a numerically stable implementation of logitboost. We then propose abc-logitboost for multi-class classification, by combining robust logi...
متن کاملSparse Autoregressive Networks
We consider high-dimensional distribution estimation through autoregressive networks. By combining the concepts of sparsity, mixtures and parameter sharing we obtain a simple model which is fast to train and which achieves state-of-theart or better results on several standard benchmark datasets. Specifically, we use an L1-penalty to regularize the conditional distributions and introduce a proce...
متن کاملDeep AutoRegressive Networks
We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from quickly and exactly via ancestral sampling. We derive an efficient approximate parameter estimation method based on the minimum description length (MD...
متن کاملMixtures of Sparse Autoregressive Networks
We consider high-dimensional distribution estimation through autoregressive networks. By combining the concepts of sparsity, mixtures and parameter sharing we obtain a simple model which is fast to train and which achieves state-of-theart or better results on several standard benchmark datasets. Specifically, we use an L1-penalty to regularize the conditional distributions and introduce a proce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2017
ISSN: 0167-9473
DOI: 10.1016/j.csda.2017.03.010